1,169 research outputs found

    Laser power stabilization for second-generation gravitational wave detectors

    Get PDF
    We present results on the power stabilization of a Nd:YAG laser in the frequency band from 1 Hz to 100 kHz. High-power, low-noise photodetectors are used in a dc-coupled control loop to achieve relative power fluctuations down to 5×10−9 Hz−1/2 at 10 Hz and 3.5×10−9 Hz−1/2 up to several kHz, which is very close to the shot-noise limit for 80 mA of detected photocurrent on each detector. We investigated and eliminated several noise sources such as ground loops and beam pointing. The achieved stability level is close to the requirements for the Advanced LIGO gravitational wave detector

    Optical ac coupling to overcome limitations in the detection of optical power fluctuations

    Get PDF
    A high-sensitivity detection method for optical power fluctuations is demonstrated based on photodetection in reflection of an optical resonator with a specific impedance matching. That resonator is used to reduce the carrier power reflected by the resonator while preserving the power fluctuation sidebands for frequencies above the resonator bandwidth. A sensitivity of 7×10−10 Hz−1/2 for relative power fluctuations was achieved with only 3 mA of detected photocurrent and 99.6% of the power remained for downstream experiments. As in the widely used ac coupling of electrical signals, this technique overcomes dynamic-range limits and reduces detector noise associated with large carrier amplitudes of the optical field

    Laser power noise detection at the quantum-noise limit of 32 A photocurrent

    No full text

    Laser beam quality and pointing measurement with an optical resonator

    Get PDF
    We present a compact diagnostic breadboard that is based on an optical ring resonator for measuring beam quality and pointing of single-frequency continuous wave lasers at a wavelength of 1064 nm. To determine the beam quality of the coherent test beam, this optical resonator is used to perform a mode decomposition into Hermite-Gaussian modes. For our laser system, a power fraction in the fundamental Gaussian mode of 97.2%±0.2% was measured. Residual misalignment and mis-mode-matching to the resonator as well as the astigmatism and/or ellipticity of the test beam have been determined. Numerical simulations showed that measurements of the M2 factor and transversal intensity distribution are not suitable for determining this power fraction. To measure the beam pointing, the fundamental mode of the optical resonator was used as a stable reference. The pointing of the test beam was measured with the differential wave front sensing technique up to Fourier frequencies of 1 kHz with a sensitivity to relative pointing of |epsilon|=1×10−6/sqrt(Hz)

    Stabilized High Power Laser for Advanced Gravitational Wave Detectors

    Get PDF
    Second generation gravitational wave detectors require high power lasers with several 100W of output power and with very low temporal and spatial fluctuations. In this paper we discuss possible setups to achieve high laser power and describe a 200W prestabilized laser system (PSL). The PSL noise requirements for advanced gravitational wave detectors will be discussed in general and the stabilization scheme proposed for the Advanced LIGO PSL will be described. Special emphasis will be given to the most demanding power stabilization requiremets and new results (RIN ≤ 4×10-9/surdHz) will be presented

    Stabilized lasers for advanced gravitational wave detectors

    Get PDF
    Second generation gravitational wave detectors require high power lasers with more than 100 W of output power and with very low temporal and spatial fluctuations. To achieve the demanding stability levels required, low noise techniques and adequate control actuators have to be part of the high power laser design. In addition feedback control and passive noise filtering is used to reduce the fluctuations in the so-called prestabilized laser system (PSL). In this paper, we discuss the design of a 200 W PSL which is under development for the Advanced LIGO gravitational wave detector and will present the first results. The PSL noise requirements for advanced gravitational wave detectors will be discussed in general and the stabilization scheme proposed for the Advanced LIGO PSL will be described

    Stabilized high-power laser system for the gravitational wave detector advanced LIGO

    Get PDF
    An ultra-stable, high-power cw Nd:YAG laser system, developed for the ground-based gravitational wave detector Advanced LIGO (Laser Interferometer Gravitational-Wave Observatory), was comprehensively characterized. Laser power, frequency, beam pointing and beam quality were simultaneously stabilized using different active and passive schemes. The output beam, the performance of the stabilization, and the cross-coupling between different stabilization feedback control loops were characterized and found to fulfill most design requirements. The employed stabilization schemes and the achieved performance are of relevance to many high-precision optical experiments

    The Clusters AgeS Experiment (CASE). II. The Eclipsing Blue Straggler OGLEGC-228 in the Globular Cluster 47 Tuc

    Full text link
    We use photometric and spectroscopic observations of the eclipsing binary OGLEGC-228 (V228) to derive the masses, radii, and luminosities of the component stars. Based on measured systemic velocity, proper motion and distance, the system is a blue straggler member of the globular cluster 47 Tuc. Our analysis shows that V228 is a semi-detached Algol. We obtain M=1.512 +/- 0.022 Msun, R=1.357 +/- 0.019 Rsun, L=7.02 +/- 0.050 Lsun for the hotter and more luminous primary component and M=0.200 +/- 0.007 Msun, R=1.238 +/- 0.013 Rsun, L=1.57 +/- 0.09 Lsun for the Roche lobe filling secondary.Comment: 19 pages, 5 figures, AJ, in pres

    Effects of nano-SiC addition on the superconducting properties of magnesium diboride

    Get PDF
    In this study, we report the results on phase formation, microstructures, and superconducting properties of a series of MgB2 samples with different level of SiC additions. The polycrystalline samples were prepared via solid state reaction by mixing magnesium, boron and silicone carbide powders according to the ratio of Mg:B:SiC = 1:2:x. XRD spectra showed that MgB2 is the primary phase while Mg2Si, MgO and MgB4, together with some unreacted SiC are the secondary phases as the addition increases. The presence of Mg2Si became more significant as the addition level increased. SEM images showed smaller grains as the addition level increases indicating more grain boundaries were formed. The Tc was as low as 30.5K for x=15wt%. The field dependence of Jc showed that x=1wt% sample gave the best performance at both 5K and 20K

    Period changes in six contact binaries: WZ And, V803 Aql, DF Hya, PY Lyr, FZ Ori, and AH Tau

    Full text link
    Six contact binaries lacking a period analysis have been chosen to search for the presence of a third body. The O-C diagrams of these binaries were analyzed with the least-squares method by using all available times of minima. Ten new minima times, obtained from our observations, were included in the present research. The Light-Time Effect was adopted for the first time as the main cause for the detailed description of the long-term period changes. Third bodies were found with orbital periods from 49 up to 100 years, and eccentricities from 0.0 to 0.56 for the selected binaries. In one case (WZ And), a fourth-body LITE variation was also applied. The mass functions and the minimal masses of such bodies were also calculated and a possible angular separation and magnitude differences were discussed for a prospective interferometric discovery of these bodies.Comment: 7 pages, 8 figures, 2009 New Astronomy 14, 12
    corecore